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Transfer Functions for Nonlinear Systems via Fourier-Borel
Transforms

Siimer Can*and Aynur Unal

Aeroflightdynamics Directorate
U.S. Army Aviation Research and Technology Activity
Ames Research Center

ABSTRACT

An analytical functional can be expressed as a sum of some nonlinear functional expansions
which we shall call Fliess’s generalized expansions. These nonlinear functional expansions are anal-
ogous to Fourier series or integral expansions of response functions of linear systems. The shuffle
product which is the characteristic of the noncommutative algebra int roduced plays a very signifi-
cant role in this approach. Moreover what makes this approach more attractive is the possibility of
doing all of the noncommutative algebra on a computer in any of the currently available symbolic
programming languages such as Macsyma, Reduce, PL1, and Lisp.

Nonlinear functional expansions for the solution of nonlinear ordinary differential equations
can be summarized by the newly introduced Laplace-Borel transforms. Some properties of these
transforms are obtained by the second author earlier. Some further properties will he given in this
paper for the first time.

The main theorem of the paper gives the transform of the response of the nonlinear system
as a Cauchy product of its transfer function which is introduced for the first time here and the
transform of the input function of the system together with memory effects.

Applications of this new transfer-function approach are given using nonlinear electronic circuits.
Two categories of applications are presented, namely,

o analysis of circuits
s synthesis of circuits.

We would like to remind the reader that various other examples can he given from other non-
linear dynamical systems; for example nonlinear aerodynamics, nonlinear flight mechanics in which
cases these two classes of problems can he called either direct problems or inverse problems.

INTRODUCTION

The solution of dvnamic problems by classical differential equation analysis is arduous, so that
various methods of transform calculus have heen developed to ease the burden and increase the
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understanding. It is interesting to note that such modern techniques stem from the work of
19th century mathematicians such as Fourier, Laplace, Cauchy, and others.

In this paper we shall develop a methodology to study nonlinear systems via transform methods.
In particular we shall use the Laplace Borel transforms which are discussed in references 1, 2, and
3.

The dynamic performance of any initially dead system can be readily described by the frequency

response function,G(jw}), thus:
Fo
G(jw) = — 1
(w) =% (1)

where F denotes the Fourier transform. This notion is closely related to the transfer function,G(s),where

Gls) = %2 (2)

1

where £ denotes the Laplace transform. The frequency response function and the transfer function
are interchangeable by the substitution s = jw. Thus the Fourier transform of the system output,
Fo(jw) is given by

Fo(jw) = Gjw).Fi(jw) (3)
where F;(jw) is the input to the system expressed as a function of frequency either by the Fourier
series for periodic functions or by the Fourier Integral for aperiodic functions. The Fourier transform
enables a system response to transient excitations to be evaluated in terms of steady-state responses
to sinusoidal excitations. Fourier methods have direct application to a few problems which are less
easily solved by the Laplace transform:

1. Random problems (i.e., noise and telecommunications) in which the input function can best
be expressed as a frequency spectrum (i.e., a Fourier integral).

2. Transformation of functions which are nonzero for negative t and are, therefore, not Laplace
transformable.

To find a Fourier pair from a Laplace pair:

1. If the Laplace transform, F(s), has poles on or to the right of the imaginary axis there is no
Fourier transform; i.e., F(s) = 1 or F(s) = - have no Fourier equivalent.

2. Substitute jw for s in F(s) to give F(jw).
3. Note that in using this method f(t) is zero for negative t.

The Laplace-Borel transforms can be summarized as operators which we can obtain from the
Laplace transformations as follows:

sF(s)],_p-1 (4)

821'0

except that the algebra on the noncommutative variable r¢ is richer. We have another type of
product called shuffle product (Le mélange) in addition to Cauchy product. It is the shutte
product which provides the mechanism for us to take care of the nonlinear terms. The shuffle
product and some related properties are presented in reference 1. The connection between the
Laplace and Fourier transforms is analogous to the one in hetween the Laplace-Borel and Fourier-
Borel transforms. We can generalize the Laplace-Borel transforms to Fourier-Borel transforms in
the same way that Fourier transforms are generalized from Laplace transforms.



LAPLACE-BOREL TRANSFORMS

We have introduced the following section to make the paper self-contained. For some basic
development we refer the reader to references 1 and 2.
For an analytical functional or function f(t) we have the following expansion:

f)= Y ansy (5)
n>0 '

For this expansion, as shown by Fliess and later by Unal in references 1 and 2 there exists a
corresponding generating power series:

G=) a.g (6)

n>0

in which ¢ is the noncomunutative variable. Then the Laplace-Borel transformation is defined as:

LB[f(t) =G (7)
G=) a.zg (8)

We shall give the following theorem as one of the basic theorems

Theorem 1 : For an analytic function f(t), there exist a corresponding function F(zo) of non-
commutative variable ¥y defined by an integral transformation:

Fleo) = 25" [ et/ flt)a (9)

which is the explicit form of the Laplace-Borel transformation.

Proof: Let us consider an analytic function f(t)e~t/% instead of f(t) and integrate from t = 0 to
{ = oc. When we multiplied f(t) with e~t/¢ which is a convergence factor we make f(t)e /%o
absolutely integrable even if f(t) is not. The integral I hecomes

o0 tn _t/_T
1:/0 S an et (10)

n>0

= Zan/ E‘?‘C_t/xodt (11)
0 n.

n>0
Next we shall use the chain rule with the usual chain rule notation:

"

dv = e~ /™0 dt (13)

Substitute these in 1,

I=Y an(uv ¥ A/ vdu) (14)
n>0 0



e /=0t

o0 ’n—l
o

- Za"%/ (n-1)!

If we continue the integration similarly, we obtain

n
I=2x Zan-’”o

n>0
= 2o LBf(1)]

Therefore, we can write

LB[f(t)] = F(z0)
- / z5le T f(t)dt
0
Next we shall give some examples to illustrate how this integral transform is obtained.

¢ Example 1:
Laplace-Borel transform of the unit step function is as follows :

Let the unit step function be denoted by u(t) then

LBlu(t)] = /;w rgle'rgl'dt

e Example 2:

Lz;place-Borel transform of f(t) = tu(t) is as follows

F(xg) = LB[tu(t))

® =1
:/ Iy ¢ To 'dt
o 0

Integration by parts with u = t and dv = e~ tdt
F(zo) = LB[tu(t))

o Example 3:

Laplace-Borel transform of f(t) = t"u(t) is as follows
oo -1
F(xo) = / l.alfnc—il'n tdt
0
Applying the integration by parts again like in the previous example we have
F(xp) = LB[t"u(t)]

- — nlp7
. = N.&y

(15)

(23)

(24)



¢ Example 4:

Laplace-Borel transform of f(t) = e*'u(t) is as follows

F(zo) = LB[e " u(t))] (30)
/w zgle e tdt (51)
0
_ /oo ralc_(a+xo)tdt (32)
0
F(z0) = LBe™“"u(t)] (33)
1
- 1+ arg (34)

Transform Theorems

’

Nonlinear differential equations in the time domain are transformed into nonlinear algebraic
equations in the transform domain zp-domain by Laplace-Borel transforms. To establish the rela-
tionships between the operations in the two domains, a series of theorems are developed and their
applications are illustrated with suitable examples.

Theorem 2 (Linearity Theorem) : If

LB fi(t)] = Fi(xo) (35)

and
LB[f>(1)] = Fa(xo) (36)

then
EB[afl(t) + bfz(f)] = aFl(.l’g) + bFz(.l‘o) (37)

where a and b are constants.

This relationship follows directly from the definition of the Laplace-Borel transform. Its principal
use is in the decomposition of time functions and transforms to simplify the transformations and
inversions. For example, suppose f(t) = sinwgpt ;

eiwot _ o—jwot

EB[SiﬂU’of] = [:B[-—‘—?J—"] (38)

From the earlier example we have

1

1 - jwere 1+ jworo

LB[sinwet] = 1/2j]

Wl
_ 40
1+ wiz] (40)

Theorem 3 : If a causal function f(t)u(t) is delayed along the t-axis by an amount ty its Laplace-
Burell fransform is given by the transform of the undelayed function multiplied by the exrponential

(‘7'1‘0 to .



The proof is as follows :

CBIF(t - to)ult - to)] = / 231 £(t - to)ult — to)e=" dt (41)
[1]
— / 2y f(t - to)e"cT"dt (42)
0
where 1o > 0. Now, we can make a change of variable t — to = 7 and we obtain
CBIf(1 ~ tohu(t —to)] = [ 25 f(r)em=o 0o ds (43)
]
= et /w 231 f(r)e "0 Tdr (44)
[+]
= ¢~ W LB[f(7)] (45)
= ¢~ " F(zo) (46)

As an example of the use of the to shift theorem, we shall determine the Laplace-Borel transform
of a rectangular pulse function with a pulse width of T and amplitude of unity. Such a function is

expressed as

fo(t) = u(t) — u(t —7) (47)

The Laplace-Borel transform of f,(t) is
LBl f(t)] = LBlu(t)] - LB[u(t - 7)] (48)
—l-eT (49)

The pulse function finds a variety of applications in formation of pulse type signals since a valid
time function description of any signal extending over the interval tp to to + T can be obtained by
multiplying the generating signal by f,(t — to). '

Theorem 4 (Scale Change Theorem) : When the independent variable t is multiplied by a
constant a (i.e. scaled by a) the corresponding transform is given by

LB[f(at)] = F(az,) (50)
The proof is as follows :
CB[f(at)] = / 21 f(at)e e tdt (51)
0

Now we make a change of variable namely, 7 = at and we obtain

£BLf(at] = [ (aze) f(r)emom) (52)
0

= F(ﬂd‘o) (53)

We can make use of this theorem and the transforms derived for normalized time functions can be
modified to cover a wide range of related functions.



Theorem 5 (Differentiation Theorem) : Laplace-Borel transform of the time derivative of a

function f(t) s
LBld/dtf(1)] = 25" [F(x0) - f(0)] (54)

where F(xg) is the Laplace-Borel transform of the function f(t).

Proof : We shall use the definition of the Laplace-Borel transform again

CB|d/dtf(1)] = /Ow 25! d’;(t ) emo3t gy (55)

Integration by parts gives (u = e=%0 tand v = f(t)):
CBIA/dLf(0)] = x5 e~ T F(1)] I +/ S f(t)e " ] (56)

since f(t)e‘rt;l‘ approaches to zero as t = oo. It follows that
LBld/dtf(t)] = 25" [F(x0) — f(0)] (57)

Hence we establish here that the differentiation in time domain corresponds to multiplication by

.1‘5] in the ro-transform domain after a constant which is equal to the value of the function at { = 0

is subtracted. We demonstrate the application of this theorem as follows:

LB|coswot] = [IB[l/wod%sinwot] (58)
= 251 JwoLB]sinwot — sin(0)] (59)
LB[coswot] = 75" i?ﬁ (60)

- i,grg (61)

As an extension of this theorem one can easily obtain the expression for the transformation of the
second time derivative as

LB )

= ¢ F(20) — 25> f(0) - 25" f(0) (63)

= x5 [25" F(x0) — x5 f(0) - £'(0)] (62)

Theorem 6 (Integration) : Laplace-Borel transform of the definite integral
t
cB([ f(0)d (64)
0

1s cqual to

= roF(20) (65)

-1



Proof :

t oo t
— -1 —zo_lt
CB] /0 F(N)dA] = /o 2 /0 FA\)dN]e%e "tdt (66)
Integration by parts with u = [* f(A\)d\ and dv = e~ tdt
t -1 t oo
__%o -zt o, 1 -1 -5t -
m[/o SN = - e /0 SO + /0 zolem®0 t f(1)dt (67)
since ¢ 70 't == 0 for t = oo and Jo F(A)dX |¢=o= 0 then
EB[/O F(N)A] = z‘,/ow rglem=o " f(1)dt (68)
B / " FVAN] = 2o F(20) (69)
0

which completes the proof.

Theorem 7 (Convolution) : Let fi(t), Fi(ze) and fa(t), F2(xo) be two Laplace-Borel transform
pairs, then the Laplace-Borel transform of the convolution of the fi(t) and fa(t) is given by

LBfi(t) » f2(1)] = 2oF1(20) F2(z0) (70)
Proof : Let us try to find the inverse transform of the product

roFy(20)Fa(0) = 2oF (20)] /0 " 25t fo(t)e " ) (71)

('hanging the variable of integration and bringing F)(2o) under the integral sign gives

2oFi(20)Fale0) = [ Fulro)fa(A)e™=5"dA (72)
Noticing that
Fi(zo)e 0 * = LB[fi(t — Mu(t - A)] (73)
we can write
2o Fy(x0)Fa(0) = /°°[/°° 25 fu(t = Au(t — A)e™=0 ] fo(A)dA (74)
o Jo
= [T Al - Nute - N )aae= (75)
0 0
Noting that \ can not exceed t hecause of u(t — A), we can write
x t —
roFi(20)Fate) = [~ 3" [ (e - A)(N)aNe et (76)
then we have .
203 (20)Fa(z0) = LB[ [ fi(t = N f2(N)aA (77)



or using the shorthand notation for convolution,

LB[fi(t) » f2(t)] = xoF1(x0) F2(20) (78)

FOURIER-BOREL TRANSFORMS

An analytic function f(t) can be represented as a linear combination of a set of elementary time
functions called basis functions ®,(t) as shown helow:

F0) =3 anda(t) (79)

Let us define a basis function ®,(t) and its complex conjugate ®;(t) as
B, (1) = jnfoe’™" (80)
&;(t) = ~ jnfoc ! (81)

where n = 0, 371,F2,...,Fo and 3o = ZTE We can show that these functions are orthogonal so

that
1 t+T

T 3, ()35 (t)dt = A, (82)

An = (nfo)? (83)

This ensures the desired property for a set of basis functions; namely, the finality of coefficients
which allows one to determine any given coefficient without the need for knowing any other coef-
ficient. To determine the coefficients a,, we multiply both sides of the equation defining f(t) by
&: (1) and integrate over the specified interval. This gives

tHh+T 84T N
[ wmwswde = [T a00) anda(nldr (84)
h t n=0
N 1
= Z a, /f o o (1), dt (85)
n=0 t

From orthogonality condition we have

1 1+

T
=yr) O (86)

all

Substituting the last equation into the first equation gives

fit) = fj jnoe™Po ! i "0 it f(1)dt] (87)
n--—oo / (n’dO)ZT -—T/? J V
> , 1 T2 :
D e R (U (88)
= 2 J_1/2 JnPo



Note that 39 = 27” is the lowest frequency component and also the spacing between the harmonics.
Now if we let T — 00, the spacing between harmonics will become a differential, that is 3o —
d3. The number of components becomes infinite hence n —— oo. The angular frequency of any
particular component is given by nfy; and the summation formally passes into an integral. If we
rewrite the last equation as

sy = [ ipe 32 [T e st (59)
10 =52 [ e ntis [ ™ sinyaryds (90)

It is clear that the inner integral is only a function of the angular frequency since the time is
integrated out. Now we shall call the inner integral Fourier-Borel transform of f(t) and we shall
denote it as follows:

FBIf(2)] = FUiB) (91)
F(ig) =3B [ e s (92)
Similarly we shall define the inverse Fourier-Borel transform as
“EGS)] = £(0) (99)
5= 5- [ B FB s (94

The functions f(t) and F(j3) are called the Fourier-Borel transform pairs. It should be noted that
if we choose the basis functions and their complex conjugates as

&,(t) = (o + jnfo)e’™® (95)
;(t) = (a — jnpo)e " (96)
In this case the Fourier-Borel transform pair becomes
FBlf(1)] = F(jB) (97)
F(i8) = (a+38) [ s ar (98)
NFGA = 5z [ o+ 3B) (B (99)

Let us consider the Fourier-Borel transform of the function f(t)e™ ' rather than the function
f(1). In this case the factor e ! is a convergence factor that tends to make €' f(t) absolutely
integrable even if f(t) is not. The Fourier-Borel transform of f(t)e™*" is :

FBle ' f(1)] = / (ot jB)e o f(t)e It (100)
= fco (a + jp)e N f(t)dt (101)
= F(a + jB) (102)

10



The corresponding inverse transform is
1 f® v AN
FBF(a t i) = 5- [ (a+iB) " Fla+ jB)™ds (103)
the convergence factor can be taken to the right-hand side to give

$0)= 5= [ o+ 3B) Fla+ jB)cm M dg (104)

Next we shall define a new variable zop = a + j3 then we have dzp = jdj if « is constant. The
inverse transform hecomes

flt) = ——_/;w 25 F(z0)e™dzo (105)

Important Properties of Fourier-Borel Transforms

We shall give the following most important properties of the Fourier-Borel transforms without
proving them, but interested reader can verify them by using the basic definitions given in this
text:

[Fi(20) + Fz(l‘o)]i[ = Fl(lo)fl+2[F1(10)UFz($0)] + Fz(TO)]_z_I (106)
Fi(x0) | [ F2(20) = 1/4{[Fi(20) + Fz(l'o)]ﬁ ~[Fi(20) - Fz(fo)]f_l} (107)
%[FI(J‘O)UB(TO)] = Fi(z0) ] | d—i;Fz(TO) + F2(x0) [ | I%F](ro) (108)
Fy(r0) [ [IF2(x0) + Fa(xo)] = Fi(20) || Fa(20) + Fi(xo) [ Fa(x0) (109)
a[Fy(20) | | Fa(20)] = aFi(xo) [ | F2(x0) (110)
= Fy(z0) ] JaF2(20) (111)
Fi(R]|]F) # Fi.R]] Fs (112)
Lu[Fi(xo) || F2(20)] = Ln[Fi(x0)] + Ln[Fa(x0)] (113)
Ln{F(x0) [ 11 = nLalF(zo)] (113)
EX[Fi(20)] ] Fa(20)] = EX[Fi(70) + Fa(x0)] (115)
Ln{EX|F(20)]} = EX{Ln[F(z0)]} (116)
= F(zo) (117)

Another very useful result is as follows:
v L e = ey e

We shall prove this result for » = 2 and then by the method of mathematical induction more
general case can be ohtained. For n = 2 we have

! 2 :(1""‘“'1'0)“

(1 - (l.l‘g)

1

—— (119)

11



Theorem 8 (Shifting) : The Fourier-Borel transform of a function is related to that of the func-
tion multiplied by an ezponential function e Bt as follows

-Bty_ _~0 .
FB[f(t)e ] = ZO+5F(~0 + B) (120)
= Zoz:ﬁup(:o) (121)
Proof: o
FB[f(t)e?] = / 206~ f(1)e~Ptdt (122)
0
—_ - * —(z0+8 )t
- ,0/0 e F(t)dt (123)
<0 had . —(z0+8)¢t
2 [T+ mye o e (124)
= :o::ﬂF(zo+ﬂ) (125)
From Unal in reference 1 we also have
FBle P f(1)] = FBle || | FBIf(1)] (126)
- ZOTﬂUF(:O) (127)

which completes the proof.

(‘onnection Between Fourier-Borel and Laplace-Borel Transforms

We have the following integral representation for the two-sided or hilateral Laplace-Borel trans-

forms

F(z) = / =oe =0t f(1)dt (128)
Let I represent the following integral
1:/ F(t)etdt (129)
0
0o " .
- / 3 a4, e dt (130)
0 n>0 n.
o0 t" =t
= Z a, —'C “otdt (131)
So Jo n!
Let
’ﬂ
u=— (132)
n.
e~ 0t = dv (133)
I= Z ay|fract™nlzg e & + /w 2! ) e~ dt (134)
= 0 © "l 0 (n-1)

12



= a,zy! : et 135
,g, ° Jo (n-1) (13%)
I:z&Za,,zo—" (136)
n>0

1
0= — (]37)

o

Hence the integral I becomes

I:rOZanza‘ (138)
— 2oLBI(1)] (139)
LB[f(t)] = oI (140)
LBIf(1)] = /0 zof(t)e="tdt (141)
- F(=0) (142)

where 2o = 2 "in which »¢ is the noncommutative variable.
TRANSFER FUNCTIONS FOR NONLINEAR SYSTEMS

C'onsider the following class of nonlinear systems with polynomial nonlinearity described by

n i

d s ;
> aiza(D)+ 3 b() = (1) (143)
Jj=1

=1

We define the operator [[" as the shuffle product which is defined by Unal in reference 1 repeated
n times and the transfer function is the transform of the response caused by a unit step function

with zero initial conditions )
1

g(lo,U) = X(20) l#(6)=u() (144)
In the Laplace-Borel transform domain the following nonlinear differential equation hecomes
dr(t
M4 ka(t) + kax(0) = £10) (145)
20 [X(20) = 2(0)] + B X(20) + ks [X(:O) UX(:O)] = LB{f(t)} (146)
From Unal (ref. 1) we have _
LBlu(t)] =1 (147)

with the zero initial conditions (i.e., #(0) = 0) the transfer function for this nonlinear differential

equation hecomes
2-1 2-1

(z0 + Ky +kQU)G(:O,I_I):1 (148)

or
2-1
1

G(:Oﬂ I_I) = o0 + k] n A’QHQ—I (149)

13



Theorem 9 (Main Theorem) : The Laplace-Borel transform of the response of the nonlinear
system considered is equal to the Cauchy product of the transfer function[G(z, [1)] with the Laplace-
Borel transform of the function which consists of the forcing function and the initial conditions of
the response and all of its higher order derivatives.

i-1 dk di—k—l
X(20) = Gleo, LD-LB{f 1) + Y i 552(0) ey 6(0) (150)
k=0
i-1 d* di—k
= Gleo, [ -LBU (1) + Y i gz 2(0) ggu(t)} (151)
k=0

Proof:
Let us consider a nonlinear dynamical system described by an n'* order nonlinear differential

equation with m'? order polynomial nonlinearity as follows :

Zai%r(t) +kiz(t) + Y k;z’(t) = f(1) (152)

j=2

We shall demonstrate the proof on the sample problem and then consider the general form.
If the dynamical system has an evolution equation of the first order with quadratic nonlinearity;

ie.,

dr

a + kyz(t) + koz?(t) = f(1) (153)
we want to express the Fourier(or Laplace)-Borel transform of the system in terms of its transfer
function and the transform of the input function. To do this we shall take the Laplace-Borel

transform of the given equation, and hence, we have
20X (z0) = 2(0) + k1 X (20) + k2X(z0) | | X(20) = F(20) (154)

We defined the transfer function as the Laplace-Borel transform of the output of the system for a
unit step function input with zero initial conditions (assuming that the system is initially dead).

f(t) = u(t) (155)
and
r(0)=0 (156)
hence
2-1
20X (z0) + k1 X(20) + k2 X(20) [[ =1 (157)
or 1
X = TRl (158)
= G(z.] ] (159)

Now we go back to the original equation and take the Laplace-Borel transform of it as

20X (20) + k1X(20) + k2X (20) [ ] X(20) = F(0) + 2(0) (160)

14



(20 + k1 + k2 1) X(20) = [F(z0) + 2(0)] (161)

or in terms of the transfer function
X(20) = G(z0,] ]) [F(=0) + 2(0)] (162)

Notice that for the system of order one the memory effect consists of only the value of the response
at the start.

We shall repeat this procedure for the more general case of a dynamical system described by
an n'" order nonlinear ordinary differential equation with mth order nonlinearity in it:

Za,dt1 )+ kyx(t) + zx (1) = f(1) (163)
j=2
n d, m J-1
) i X () Za, 21 = 2(0) + k1 X(20) + > k;X(z0) || = F(0) (164)
i=1 j=2
or
n ) m j-1 n ) d,'_l
(z0) [ Sz + b+ Y kL) = [F(:0)+ Za,fz;,-ldriwlzm)] (165)
=1 =2 i=1
or .
X (20) ! [F( 4+ ez 1(0)] (166)
AlZg) = 20 120 T g
(Srycizh + b+ TR k11 Y i=1 det
or in terms of the transfer function of the system we have:
. , i-1 - i-1 d! -
X(z0) = Glzo, ] ) [Fl20) + D iz T17(0) (167)
i=1 '
Notice that for i = 1 and j = 2 and a; = 1 the preceding general relation reduces to
X(z) = (:o kot ks U) [F(z0) + 2(0)] (168)
2-1
= G(z0, | |) [F(20) + 2(0)] (169)

Corollary 1 (Main Corollary) : For a memoryless system the Laplace-Borel transform of the
output of the system is given by the Cauchy product of the transfer function with the Laplace-Borel
transform of the input of the system.

Proof of Corollary: The memory effects are lumped into the second term of the second factor of

the C'auchy product; i.e.,
di-1

Z“'O e 1 2(0) (170)

which means function itself and its higher order derivatives evaluated at the zero time.
When the system has no memory we shall be left with

X(z0) = G(=o, U)F( o) (171)
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In other words we can say that the main theorem has the same form as the linear systems if the

nonlinear systemm has no memory.
APPLICATIONS

We shall give examples both from synthesis and analysis of nonlinear circuits as applications to
Fourier-Borel hased transfer function approach to nonlinear systems.

Representation of Nonlinear Resistance

v = R(i)i (172)
R(i) = Ro+ Ryi + Rpi* + ... (173)
=Y R;i/ (174)

j=0
= () R;if)i (175)

—
=Y Rt (176)

By Laplace-Borel transformation
i+l

V(z) = ZR (=) | | (177)
From the definition of system function

V(%) = Rz, | | )-2(20) (178)

Rz [ = ZR 11 (179)

and the admittance function follows

" i+l 1
G(=0,]] )= SLE (180)

Representation of Nonlinear (‘apacitance

We shall define the impedance and admittance functions in Laplace-Borel domain as:

Clvy=Y Cv/ (181)
Jj=0

16



Representation of Nonlinear Inductance

(182)

(183)

(184)

(185)

(186)

(187)
(188)

(189)

We shall define the impedance and admittance functions in the Laplace-Borel transform domain

as @

L(i) =Y L;¥(t)
j=0
&(t) = L(4)i
= i:Ljij“
7=0

a _
dt

d & i
= E Z szJ+1
j=0

the derivative theorem applied once yields

v

v(z0) = 20®(z0)

JjH

= :OZ L;iI{z) U .
7=0

(190)

(191)

(192)

(193)

(194)

(195)

(196)

We can write using the operator symbolism whereby || to any power indicates the shuffle product

which is discussed by Unal in reference 1.

v(z0) = Z(z0)1(=0)

17
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n 1+1

Z(z) =203 Li]] (198)
J=0

Y(z0) = Z7'(z0) (199)

= ! (200)

- 1!
~0 Ej:O LJ U

A Nonlinear Circuit

Figure 1 shows the first nonlinear system which we shall characterize by the following nonlinear
ordinary first-order differential equation.

i(t)y=1ir+1ic + irN (201)
do(t
~v/R+C ’;(t ) 4 inn (202)
dv 1 2 .
Czt' + ‘E‘U + kav® = l(t) (203)
dv s .
X + kv + kov® = i(t) (204)
2-1
20“”(20 - U(O)] + le(:o) + ’.‘2""(:0) U = I(:g) (205)
which becomes -
.'_'QV(ZQ) + k] V(Zo) + "2“"(:0) u = I(Zo) (206)
The system’s transfer function is
2-1 1
Gz, ][] )= (207)

2o+ byt kP

We notice that in this example the system’s transfer function is an impedance; i.e., G = Z.

18
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Figure 1.- A nonlinear circuit.
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A Synthesis Problem
Let us suppose that we are given an impedance function Z (z0) as

1

Z(z) = 208
Y(20) = o (209)
Y07 Z(20)
2-1
=z+k+k]] (210)
In figure 2 we shall denote the three parallel elements by
Y'l = 20 (211)
Yo=Kk (212)
2-1
Ya=k|] (213)
Yi(z0) = 70 (214)
= C=1 (215)
Ya(z0) = ks (216)
1
= R=— (217)
ks
2-1
Ya(zo) = k2 | ] (218)

20
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Figure 2.- A synthesis problem.
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== i = kyv? (219)

At this point we should look at figure 3 to see the equivalent circuit.

An Analysis Problem

Next we shall present an analysis example. Let us say that we are given an input current of

i(t) = u(t) (220)

i(t) = cos(wt) (221)

I(20) =1 (222)

V(z0) = Z(z0) , (223)
2(z0) = : (224)

zo+ k4 ko [P
This last fraction actually can be obtained using any of the following symbolic programming lan-
guages: 1) Macsyma; 2) Reduce; 3) PL1; and 4) Lisp.

In reference 2 this particular result tabulated, but we must change our variable

0 =2p! (225)
2-1
Viegh + k) =1-kV]] (226)
V(1 + kyzo) = 7o — kazoV ] ] (227)
V= (14 ky2o) 2o — ka(1 + kyzo) zo(V] V). (228)

The inverse transformations can be obtained by partial fractions and the time domain response of

the system follows as

v(t) = %(1 — ety :—':;(1 — 2kyte it _ ety 4 (229)
When the input current is given as

i(t) = cos(wt) (230)

similar steps will be followed and we have

-2

10 = 57 (231)
0 =a5! (232)
Vo= (1 4+ kzo) N1+ whad) oo — ko1 4 Ky 1’0)_11'0[""”"’] (233)

In table IV of reference 2, this generating power series is obtained using a symbolic program. Inverse
transformation by partial fractions yields finally

1

—kye M1t 4 kycos(wt) + wsin(wt)] + ... (234)
% + w?
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Figure 3.- An analysis problem.

23



Fréchet Differential of the Response

Generating power series or equivalently Laplace-Borel transforms of the responses of nonlinear
systems assume the existence of analyticity throughout the regime. However, we are fully aware of
the fact that the loss of analyticity is very important and as explained in reference 4 is equivalent to
the loss of Fréchet differentiability of the response, and hence, to the bifurcations of the response.
Bifurcations in between regimes do take place at the critical values of the system’s parameters and
we can account for them by monitoring the Fréchet differential of the response.

To fix ideas, let us consider the nonlinear circuit problem :

d%v + kv + kov? = i(t) (235)

where i(t) represents the input current. Let us denote the Fréchet differential of the response hy
8 N{v,n] which is given by its definition as

Nlo,) = lim (w) : (236)

€

or in Laplace-Borel transform domain,

Vi -V[i
SNV, Q] = lim ( i+ erz] [z]) (237)
where V, ) are the Laplace-Borel transforms of v, 7, respectively. From the main theorem, we have

V(i) = G(zo, ] |- [£B(i) + v(0)] | (238)

Similarly, using the main theorem once more we can write the output transformation for an input
i+ €nas

V(i + en) = G(z0,| ])- [LB(i + en) + v(0)] (239)
since LB (i + en) = LB (i) + ¢ LB(n) we have
NIV, Q) = Tim G(z0, ] ])CB(n) (240)
If Q(=0) = £B(n) then
SN(V,Q) = lim G(z0,] )-0(=0) (241)

or if we take n(t) = u(t) (i.e., unit step function), then @(z0) = 1 and the Fréchet differential
becomes

SNV, Q] = Gz, ] ) x 1 (242)

or

SNV, Q] = G0, ]) (243)

which states that the Fréchet differential in Laplace-Borel transform domain is given by the transfer
function of the system.
It is quite straightforward to generalize the previous result as

-1

X(f) = Gz, 1 ])- F(~o+zﬂ.' d ———(0) (244)
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and

n . di-1
X(f +en) = G(zo, | |- | Flz0) + €Q(z0) + D_aizg ' =12(0) (245)
=1
and hence
SNF, Q] = G(z0,] ]) x =) (246)
or with (t) = u(t); i.e., unit step function
SN|F,Q] = G(=0,] ]) (247)

Hence, we have the following theorem

Theorem 10 (Fréchet Differential) : The Fréchet differential of the response of a nonlinear
dynamical system with polynomial type of nonlinearities is given in terms of the system’s tranfer
function and the variable of the Laplace-Borel transform as :

EN(X) = G(z0, | ) (248)

CONCLUDING REMARKS

We have demonstrated that the general response of nonlinear dynamical systems can be ex-
pressed in terms of their transfer functions in an analogous way to the linear systems.

We defined the transfer functions as the generalized series for the response of the nonlinear
dynamical system which is initially at rest and which is loaded by a unit step function.

These transfer functions are obtainable through symbolic computer algebra and currently we
have one of the following languages available to us: 1) Macsyma, 2) Reduce, and 3) PL1.

Analyticity of the response is assumed when the total response is expressed in terms of the
transfer functions.

As a result of the last theorem on the Fréchet differential the loss of analyticity implies the
loss of Fréchet differential (ref. 4), and the loss of Fréchet differential implies the loss of transfer
function (i.e., at Bifurcation points) we can not determine the transfer functions.
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